Abstract
Magnetic resonance imaging (MRI) is a popular imaging tool that is valuable for the early detection and monitoring of malignancies because it does not involve radiation and is noninvasive. Metal-based contrast agents (CAs) are commonly used in clinical settings despite concerns about the toxicity of free metals. Therefore, finding alternative nontoxic imaging probes is vital. In this work, we have synthesized and effectively utilized sustainable biomass lignin-based all-organic nanoconjugates linked with nitroxide radicals as MRI CAs. Lignin grafted with poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (LPGT) exhibits a longitudinal relaxivity of 0.54 mM-1 s-1. LPGT shows exceptional characteristics, including resistance to reduction and nontoxicity toward living organisms. LPGT displays enhanced MRI contrast in the BALB/c mouse model for a duration exceeding 4.35 h. Our primary goal is to design MRI agents that are exceptionally effective sustainable biomass-derived materials and do not require the use of metals. Nicely, LPGT offers adequate contrast enhancement at 5-fold lower (0.020 mmol/kg) than the standard dose (0.1 mmol/kg), easing worries about toxic metal buildup. Consequently, LPGT shows promise as a feasible CA for metal-free MRI.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.