Abstract
Red mud is an industrial by-product produced in the process of alumina refining. It contains many iron elements, and the traditional resource utilization method is to extract it. This study took an alternative approach by using red mud's iron content as the substrate to synthesize a novel iron-biochar adsorbent for removing heavy metals from wastewater. Walnut shell biochar was reacted with the iron in red mud via an in-situ reduction–oxidation process to produce an iron-carbon composite adsorbent (FexOy-BC). A series of characterization analyses (e.g., SEM, FTIR, XPS, etc.) and batch adsorption experiments were conducted to investigate the properties and Cd(II) removal performance of the adsorbent, respectively. Response surface methodology was further employed to optimize the adsorption conditions, identifying the ideal 6 g/L adsorbent dose, 10 mg/L initial Cd(II) concentration (C0), and pH 6. The optimized quadratic model demonstrated excellent fit, with an average Cd(II) removal efficiency of 92.59 % under optimal conditions. The adsorption mechanism, renewability, and preliminary cost-benefit analysis indicate that FexOy-BC has the potential to be a highly efficient and sustainable adsorbent. In summary, the new method can recover resources from red mud waste and synthesize heavy metal adsorbents, which comprehensively solves two long-standing problems of industrial waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.