Abstract
Amaranths are recognized by their high nutritive value and their natural tolerance to environmental stresses. In this study, physiological differences in response to water stress were compared between A. hybridus, a wild species considered as weed, and A. hypochondriacus, the most cultivated species for grain production, under the hypothesis that wild species have better adaptation to stress. In both species, photosynthetic parameters, pigments, and gene expression of selected genes were assessed. Biomass, effective quantum efficiency (ΦPSII), photochemical quenching (qP), and electron transport rate (ETR) values were reduced only in A. hybridus due to water deficit. Drought stress promoted proline accumulation by twice in A. hybridus but until three times in A. hypochondriacus. In both species, drought stress reduced net assimilation rate (A), transpiration rate (E), stomatal conductance (gs), and the expression of phosphoenol pyruvate carboxylase (PEPC). While, maximum quantum efficiency (Fv/Fm), chlorophyll, betacyanins, and the expression of ribulose1–5, bisphosphate carboxylase/oxygenase large subunit (LSU) did not change when plants were subjected to water stress. Likewise, both species accumulated total phenolic compounds and Oxalyl-CoA gene was up-regulated in response to drought. Our results have shown that A. hypochondriacus, the cultivated species, exhibited better tolerance to drought than A. hybridus, the wild species, probably due to an unconsciously selected trait during the domestication process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.