Abstract
Abstract. The global fire emission inventories depend on ground and airborne measurements of species-specific emission factors (EFs), which translate dry matter losses due to fires to actual trace gas and aerosol emissions. The EFs of nitrogen oxides (NOx) and carbon monoxide (CO) can function as a proxy for combustion efficiency to distinguish flaming from smoldering combustion. The uncertainties in these EFs remain large as they are limited by the spatial and temporal representativeness of the measurements. The global coverage of satellite observations has the advantage of filling this gap, making these measurements highly complementary to ground-based or airborne data. We present a new analysis of biomass burning pollutants using space-borne data to investigate the spatiotemporal efficiency of fire combustion. Column measurements of nitrogen dioxide and carbon monoxide (XNO2 and XCO) from the TROPOspheric Monitoring Instrument (TROPOMI) are used to quantify the relative atmospheric enhancements of these species over different fire-prone regions around the world. We find spatial and temporal patterns in the ΔXNO2 ∕ ΔXCO ratio that point to distinct differences in biomass burning behavior. Such differences are induced by the burning phase of the fire (e.g., high-temperature flaming vs. low-temperature smoldering combustion) and burning practice (e.g., the combustion of logs, coarse woody debris and soil organic matter vs. the combustion of fine fuels such as savanna grasses). The sampling techniques and the signal-to-noise ratio of the retrieved ΔXNO2 ∕ ΔXCO signals were quantified with WRF-Chem experiments and showed similar distinct differences in combustion types. The TROPOMI measurements show that the fraction of surface smoldering combustion is much larger for the boreal forest fires in the upper Northern Hemisphere and peatland fires in Indonesia. These types of fires cause a much larger increase (3 to 6 times) in ΔXCO relative to ΔXNO2 than elsewhere in the world. The high spatial and temporal resolution of TROPOMI also enables the detection of spatial gradients in combustion efficiency at smaller regional scales. For instance, in the Amazon, we found higher combustion efficiency (up to 3-fold) for savanna fires than for the nearby tropical deforestation fires. Out of two investigated fire emission products, the TROPOMI measurements support the broad spatial pattern of combustion efficiency rooted in GFED4s. Meanwhile, TROPOMI data also add new insights into regional variability in combustion characteristics that are not well represented in the different emission inventories, which can help the fire modeling community to improve their representation of the spatiotemporal variability in EFs.
Highlights
The importance of biomass burning as a source of atmospheric trace gases and aerosols has been increasingly stud-Published by Copernicus Publications on behalf of the European Geosciences Union.I
We demonstrated the capability of new highquality XCO and XNO2 column observations from the space-borne TROPOspheric Monitoring Instrument (TROPOMI) instrument to detect and quantify spatial variations in biomass combustion efficiency from a top-down perspective
We have investigated regional biomass burning characteristics and efficiency using the new space-based TROPOMI measurements of XCO and XNO2
Summary
The importance of biomass burning as a source of atmospheric trace gases and aerosols has been increasingly stud-I. The importance of biomass burning as a source of atmospheric trace gases and aerosols has been increasingly stud-. To quantitatively assess the influence of biomass burning on atmospheric chemistry and climate, the atmospheric modeling community requires accurate estimates of fire emissions. Important scientific efforts have led to the development of a number of biomass burning emission products by combining satellite-derived datasets of burned area with biogeochemical models and biomass density datasets that enabled more accurate emission estimates (e.g., Hoelzemann et al, 2004; Ito and Penner, 2004; van der Werf et al, 2003). The recent emergence of new space-based instruments that measure different trace gases could provide additional top-down constraints on biomass burning emissions and combustion characteristics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.