Abstract

One of negative side-effects of usage of bio-renewables might be generation of mineral (ash) material, potential source of environmental pollution. A hypothesis was that bottom ash (BA; from biomass cogeneration facility) could be efficiently (re) used in soil chemical conditioning similarly to widely-used dolomite-based soil conditioner (DO; from Croatian Dinaric-coastal region) which we tested by: i) physicochemical characterisation of BA and DO, and ii) bioassay with Raphanus sativus cultivated in acidic soil amended with BA or DO. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) confirmed complex chemical/physical structures and morphology between amendments, X-ray diffraction (XRD) showed their distinctive mineralogy with predominantly dolomite (in DO) vs. quartz and calcite (in BA), while secondary ion mass spectrometry (SIMS) revealed their diverse elemental/isotopic composition. The BA or DO amendments ameliorated soil acidity, increased available P, K and most other nutrients, but not Cd. The BA or DO amendments improved vegetative growth and edible hypocotyl yield. However, both amendments also increased Cd accumulation in all radish tissues, which was unexpected given the alkaline matrix of bio-ash and dolomite that would be likely to facilitate retention and immobilisation of toxic Cd. Thus, thorough characterisation and evaluation of BA- and/or DO-based materials and relevant soils (with an emphasis on metal sorption/immobilisation) prior to application in (agro) ecosystems is crucial for producing food clean of toxic metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.