Abstract

The development of multifunctional materials to eliminate electromagnetic wave interference (EMI) and achieve multi-source driven thermal management for electronic devices has become a consensus. In this work, biomass-based carbon aerogels (LG) were prepared and used as porous supporting material to encapsulate magnetic Fe3O4@polyethylene glycol (Fe3O4@PEG) by vacuum impregnation. Form-stable LG-based phase change composites (LGP) were obtained, which had excellent thermal storage capability and satisfactory EMI shielding effectiveness (SE). With the supporting and bridging effects of GO, LGP-3–0 % has a high latent heat enthalpy of 156.32 J/g and excellent electrical conductivity of 281.1 S/m. With addition of 7 wt% Fe3O4, LGP-3–7 % achieves satisfactory EMI SE of 53.83 dB. Furthermore, LGP-3–7 % exhibits an outstanding performance of multi-source driven thermal management, including light-to-thermal, magnetic-to-thermal, and electro-to-thermal conversion. In short, LGP show the wide application prospects for electronic device to avoid EMI and achieve thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.