Abstract
The root biomass of oak young trees significantly decreased after 2 years of exposure to high levels of ozone, but increased nitrogen wet deposition tended to partly contrast this effect. A 2-year Open-Top Chamber (OTC) experiment with young Quercus robur trees that were exposed to different levels of ozone (O3) and nitrogen deposition was performed in Curno (Northern Italy) for the FP7 Project ECLAIRE. The plants were exposed to four levels of ozone (−40 % of ambient ozone in charcoal-filtered OTCs, −5 % in non-filtered OTCs, and +30 and +75 % in O3-enriched OTCs) and two levels of nitrogen wet deposition (tap water and tap water +70 kg N ha−1 year−1). The stomatal conductance and A/Ci response curves were measured during the two experimental seasons, and in October, the plant dry biomass partition between the roots and stem was assessed. Oak plants were moderately sensitive to O3. After the second year of treatments, the dose–response relationships based on the O3 stomatal flux indicated a 4.6 % of root biomass loss and a 12.1 % of reduction of the number of leaves per 10 mmol O3 m−2 absorbed by plants grown with no nitrogen addition. Ozone also decreased both the stomatal conductance and the maximum carboxylation rate allowed by Rubisco (V cmax) during the first year of treatments. However, the effect on V cmax was lost during the second year, and the plants showed an uncoupling between leaf-level physiological responses and plant-level biomass responses. Increased nitrogen deposition enhanced the growth of plants and partially mitigated the O3 impact on biomass and physiology, but no significant effect of the interaction between the two factors was found. The data that were collected could contribute to the definition of the O3 dose–response relationships based on biomass losses for deciduous trees in Southern Europe climatic conditions and could improve the O3 risk assessment models by providing new information about the effect of increased nitrogen deposition on the ozone impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.