Abstract

Containerized Chinese fir (Cunninghamia lanceolata (Lamb) Hook) were reared from seed at four fertilizer levels (0, 15, 45, 75 mg N seedling-1 season-1) and two topdressing schedules (conventional or exponential) for a 22-week greenhouse rotation to assess growth, nutrition and nutrient loading capacity of seedlings. Extra P supplemented high fertilization (or nutrient loading) treatments to test for induced deficiency of this element. The schedule and rate of fertilization significantly affected growth and nutrient dynamics of the seedlings. Steady-state nutrition and superior growth performance were achieved by seedlings fertilized exponentially at the operational dose (15 mg N), yielding 23, 72 and 52% more in respective biomass, N uptake and P uptake than seedlings fertilized conventionally at the equivalent dose. The improved growth and fertilizer efficiency were attributed to close synchronization of exponential nutrient supply with exponential growth and nutrient demand of plants. High dose exponential fertilization (45 and 75 mg N) induced steady state-nutrition late in the season, increasing seedling N and P uptake by 72–83% and 50–96% compared to low dose exponential fertilization, demonstrating effective nutrient loading of plants without changing biomass. The extra P stimulated P uptake without altering growth or N uptake, thus P was probably not limiting during the greenhouse culture despite high N additions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call