Abstract

BackgroundThe article presents the first estimates of biomass and productivity for mangrove forests along the Oligohaline zone of the Sundarbans Reserve Forest (SRF), Bangladesh. This study was conducted overone year from March 2016 to April 2017. Stand structure, above and below-ground biomass changes, and litterfall production were measured within a 2100 m2 sample plot.MethodsAll trees in the study plots were numbered and height (H) and diameter at breast height (DBH) were measured. Tree height (H) and DBH for each tree were measured in March 2016 and 2017. We apply the above and belowground biomass equation for estimating the biomass of the mangrove tree species (Chave et al. Oecologia 145:87−99, 2005; Komiyama et al. J Trop Ecol 21:471–477, 2005). Litterfall was collected using 1-mm mesh litter traps with collection area of 0.42 m2. Net Primary Production (NPP) was estimated by the summation method of Ogawa Primary productivity of Japanese forests: productivity of terrestrial communities, JIBP synthesis (1977) and Matsuura and Kajimoto Carbon dynamics of terrestrial ecosystem: Systems approach to global environment (2013).ResultsHeritiera fomes has maintained its dominance of the stand and also suffered the highest tree mortality (2.4%) in the suppressed crown class. The total above-ground biomass (AGB) and below-ground biomass (BGB) of the studied stand was 154.8 and 84.2 Mg∙ha−1, respectively. Among the total biomass of the trees, 64.8% was allocated to AGB and 35.2% to BGB. In case of species-wise contribution of biomass allocation, Avicennia officinalis showed the highest score and Aglaia cucullata the lowest. Mean annual total litterfall was 10.1 Mg∙ha−1∙yr−1, with the maximum litterfall in winter or dry season and late summer or rainy season. The mean AGB increment and above-ground net primary productivity (AGNPP) were 7.1 and 17.2 Mg∙ha−1∙yr−1, respectively. Total net primary productivity (NPP) was estimated to be 21.0 Mg∙ha−1∙yr−1 over the observed period. The results in the Sundarbans mangrove forests exhibited that mangrove communities with similar height and diameter produced different biomass production with the different basal area. The present analysis revealed that the root biomass was large enough and the mean ratio of above−/below-ground biomass was estimated to be 1.84.ConclusionsMangrove communities growing at the oligohaline zone of the Sundarbans, Bangladesh showed high biomass and net primary production indicating their ecological and conservation significance that may be considered in future decision making process for the area as well as in understanding the role of Sundarbans mangrove forest on mitigating the effect of global warming.

Highlights

  • The article presents the first estimates of biomass and productivity for mangrove forests along the Oligohaline zone of the Sundarbans Reserve Forest (SRF), Bangladesh

  • Litterfall is a valuable indicator of their productivity and it is the most measured component of total net primary productivity (Day et al 1987; Mackey and Smail 1995)

  • We established 21 plots (10 m × 10 m), which are located in the Oligohaline zone of the Sundarbans, covering 2100 m2 where all were considered around 200 m away from the shore for avoiding destruction of the plot due to river erosion and damages due to storms

Read more

Summary

Introduction

The article presents the first estimates of biomass and productivity for mangrove forests along the Oligohaline zone of the Sundarbans Reserve Forest (SRF), Bangladesh. Biomass and net primary productivity of mangrove forest have been studied previously in different mangrove forests across the world (e.g., Putz and Chan 1986; Day et al 1987, 1996; Saintilan 1997; Komiyama et al 2000; Kamruzzaman et al 2017) and the purposes of their biomass estimation and productivity are mainly related to consideration of ecosystem management and evaluation of carbon stock (Tamai et al 1986, Komiyama et al 1987, 2000). Changes in salinity might be responsible for the spatial distribution of plant communities (Ahmed et al 2011)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call