Abstract

Drugs targeting DNA damage repair (DDR) pathways are exciting new agents in cancer therapy. Many of these drugs exhibit synthetic lethality with defects in DNA repair in cancer cells. For example, ovarian cancers with impaired homologous recombination DNA repair show increased sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Understanding the activity of different DNA repair pathways in individual tumors, and the correlations between DNA repair function and drug response, will be critical to patient selection for DNA repair targeted agents. Genomic and functional assays of DNA repair pathway activity are being investigated as potential biomarkers of response to targeted therapies. Furthermore, alterations in DNA repair function generate resistance to DNA repair targeted agents, and DNA repair states may predict intrinsic or acquired drug resistance. In this review, we provide an overview of DNA repair targeted agents currently in clinical trials and the emerging biomarkers of response and resistance to these agents: genetic and genomic analysis of DDR pathways, genomic signatures of mutational processes, expression of DNA repair proteins, and functional assays for DNA repair capacity. We review biomarkers that may predict response to selected DNA repair targeted agents, including PARP inhibitors, inhibitors of the DNA damage sensors ATM and ATR, and inhibitors of nonhomologous end joining. Finally, we introduce emerging categories of drugs targeting DDR and new strategies for integrating DNA repair targeted therapies into clinical practice, including combination regimens. Generating and validating robust biomarkers will optimize the efficacy of DNA repair targeted therapies and maximize their impact on cancer treatment. Clin Cancer Res; 22(23); 5651-60. ©2016 AACR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.