Abstract

Background and Objectives: Glycated hemoglobin (HbA1c) dosage is considered the gold standard in glycol-metabolic monitoring, but it presents limits, which can underestimate the glycemia trend. In this regard, it was introduced the glycated albumin (GA). The aim of the study is to verify the predictivity of the GA compared to HbA1c in identifying glyco-metabolic alterations in non-diabetic and diabetic hemodialysis (HD) patients. Materials and Methods: For this purpose, we conducted a multicenter study involving one analysis laboratory and six dialysis centers in the Lazio region (Rome, Italy). Both diabetic and non-diabetic HD patients represent the study population, and the protocol included five time points. Results: The analyzed data highlighted the ability of GA to predict changes in glycemic metabolism in HD patients, and GA values are not significantly influenced, like HbA1c, by dialysis therapy itself and by comorbidities of the uremic state, such as normochromic and normocytic anemia. Thus, GA seems to reflect early glyco-metabolic alterations, both in patients with a previous diagnosis of diabetes and in subjects without diabetes mellitus. As part of this study, we analyzed two HD patients (one diabetic and one non-diabetic) in which GA was more predictive of glycol-metabolic alterations compared to HbA1c. Our study confirms the need to compare classical biomarkers used for the monitoring of glyco-metabolic alterations with new ones, likely more reliable and effective in specific subgroups of patients in which the classic biomarkers can be influenced by the preexisting pathological conditions. Conclusions: In conclusion, our evidence highlights that in uremic patients, GA shows a better ability to predict glyco-metabolic alterations allowing both an earlier diagnosis of DM and a prompt modulation of the hypoglycemic therapy, thus improving the clinical management of these patients.

Highlights

  • In 2019, the estimated prevalence of chronic kidney disease (CKD) in the world was13.4% [1]

  • Among the causes of CKD, the most common are nephroangiosclerosis and diabetic kidney disease (DKD) [5]. These two pathological conditions are linked to high blood pressure and long-lasting diabetes mellitus (DM), and they represent almost half of all the causes of CKD [6]

  • HbA1c was obtained through the use of Capillarys Flex Piercing (SEBIA, Lisses, France), and GA was performed using the quantILab glycated albumin kit (Instrumentation Laboratory, Ascoli Piceno, Italy) implemented on the COBAS c702 Module (ROCHE Diagnostics, Mannheim, Germany)

Read more

Summary

Introduction

In 2019, the estimated prevalence of chronic kidney disease (CKD) in the world was13.4% [1]. Among the causes of CKD, the most common are nephroangiosclerosis and diabetic kidney disease (DKD) [5]. Glycated hemoglobin (HbA1c) dosage is considered the gold standard in glycol-metabolic monitoring, but it presents limits, which can underestimate the glycemia trend. In this regard, it was introduced the glycated albumin (GA). Materials and Methods: For this purpose, we conducted a multicenter study involving one analysis laboratory and six dialysis centers in the Lazio region (Rome, Italy). Both diabetic and non-diabetic HD patients represent the study population, and the protocol included five time points. Results: The analyzed data highlighted the ability of GA to predict changes in glycemic metabolism in HD patients, and GA values are not significantly influenced, like

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call