Abstract

Children who require surgery for congenital heart disease have increased risk for long-term chronic kidney disease (CKD). Clinical factors as well as urine biomarkers of tubular health and injury may help improve the prognostication of estimated glomerular filtration rate (eGFR) decline. We enrolled children from 1month to 18years old undergoing cardiac surgery in the ASSESS-AKI cohort. We used mixed-effect models to assess the association between urinary biomarkers (log2-transformed uromodulin, NGAL, KIM-1, IL-18, L-FABP) measured 3months after cardiac surgery and cyanotic heart disease with the rate of eGFR decline at annual in-person visits over 4years. Of the 117 children enrolled, 30 (24%) had cyanotic heart disease. During 48months of follow-up, the median eGFR in the subgroup of children with cyanotic heart disease was lower at all study visits as compared with children with acyanotic heart disease (p = 0.01). In the overall cohort, lower levels of both urine uromodulin and IL-18 after discharge were associated with eGFR decline. After adjustment for age, RACHS-1 surgical complexity score, proteinuria, and eGFR at the 3-month study visit, lower concentrations of urine uromodulin and IL-18 were associated with a monthly decline in eGFR (uromodulin β = 0.04 (95% CI: 0.00-0.09; p = 0.07) IL-18 β = 0.07 (95% CI: 0.01-0.13; p = 0.04), ml/min/1.73 m2 per month). At 3months after cardiac surgery, children with lower urine uromodulin and IL-18 concentrations experienced a significantly faster decline in eGFR. Children with cyanotic heart disease had a lower median eGFR at all time points but did not experience faster eGFR decline. A higher-resolution version of the Graphical abstract is available as Supplementary information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call