Abstract

ObjectiveTo describe the laboratory parameters and biomarkers of the cytokine storm syndrome associated with severe and fatal COVID-19 cases.MethodsA search with standardized descriptors and synonyms was performed on November 28th, 2020 of the MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, LILACS, and IBECS to identify studies of interest. Grey literature searches and snowballing techniques were additionally utilized to identify yet-unpublished works and related citations. Two review authors independently screened the retrieved titles and abstracts, selected eligible studies for inclusion, extracted data from the included studies, and then assessed the risk of bias using the Newcastle-Ottawa Scale. Eligible studies were those including laboratory parameters—including serum interleukin-6 levels—from mild, moderate, or severe COVID-19 cases. Laboratory parameters, such as interleukin-6, ferritin, hematology, C-Reactive Protein, procalcitonin, lactate dehydrogenase, aspartate aminotransferase, creatinine, and D-dimer, were extracted from the studies. Meta-analyses were conducted using the laboratory data to estimate mean differences with associated 95% confidence intervals.Data synthesisThe database search yielded 9,620 records; 40 studies (containing a total of 9,542 patients) were included in the final analysis. Twenty-one studies (n = 4,313) assessed laboratory data related to severe COVID-19 cases, eighteen studies (n = 4,681) assessed predictors for fatal COVID-19 cases and one study (n = 548) assessed laboratory biomarkers related to severe and fatal COVID-19 cases. Lymphopenia, thrombocytopenia, and elevated levels of interleukin-6, ferritin, D-dimer, aspartate aminotransferase, C-Reactive-Protein, procalcitonin, creatinine, neutrophils and leucocytes were associated with severe and fatal COVID-19 cases.ConclusionsThis review points to interleukin-6, ferritin, leukocytes, neutrophils, lymphocytes, platelets, C-Reactive Protein, procalcitonin, lactate dehydrogenase, aspartate aminotransferase, creatinine, and D-dimer as important biomarkers of cytokine storm syndrome. Elevated levels of interleukin-6 and hyperferritinemia should be considered as red flags of systemic inflammation and poor prognosis in COVID-19.

Highlights

  • In December 2019, a new strain of coronavirus, severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, and starting in March of 2020, the world was plunged into a pandemic due to the disease (COVID-19) caused by this new coronavirus

  • This review points to interleukin-6, ferritin, leukocytes, neutrophils, lymphocytes, platelets, C-Reactive Protein, procalcitonin, lactate dehydrogenase, aspartate aminotransferase, creatinine, and D-dimer as important biomarkers of cytokine storm syndrome

  • Elevated levels of interleukin-6 and hyperferritinemia should be considered as red flags of systemic inflammation and poor prognosis in COVID-19

Read more

Summary

Introduction

In December 2019, a new strain of coronavirus, severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, and starting in March of 2020, the world was plunged into a pandemic due to the disease (COVID-19) caused by this new coronavirus. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have cytokine storm syndrome (CSS). Elevated serum concentrations of IL-6 and other inflammatory cytokines are hallmarks of CSS and correlate with poor clinical outcomes [3]. Elevated serum C-reactive protein (CRP), a protein whose expression is driven by IL-6, is a biomarker of severe clinical manifestations of COVID-19. This infection results in monocyte, macrophage, and dendritic cell activation. The increased systemic cytokine production contributes to the pathophysiology of severe COVID-19 and acute respiratory distress syndrome (ARDS). We have designed and carried out this living systematic review to guide the evaluation and early recognition of CSS by: Biomarkers of cytokine storm in COVID-19: Systematic review and meta-analysis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call