Abstract

Antioxidants located in both the hydrophilic and lipophilic compartments of plasma are actively involved as a defense system against reactive oxygen species (ROS), which are continuously generated in the body due to both normal metabolism and disease. However, when the production of ROS is not controlled, it leads to cellular lipid, protein, and DNA damage in biological systems. Several assays to measure `total' antioxidant capacity of plasma have been developed to study the involvement of oxidative stress in pathological conditions and to evaluate the functional bioavailability of dietary antioxidants. Conventional assays to determine antioxidant capacity primarily measure the antioxidant capacity in the aqueous compartment of plasma. Consequently, water-soluble antioxidants such as ascorbic acid, uric acid and protein thiols mainly influence these assays, whereas fat-soluble antioxidants such as tocopherols and carotenoids play only a minor role. However, there are active interactions among antioxidants located in the hydrophilic and lipophilic compartments of plasma. Therefore, new approaches to define the `true' total antioxidant capacity of plasma should reflect the antioxidant network between water- and fat-soluble antioxidants in plasma. Revelation of the mechanism of action of antioxidants and their true antioxidant potential will help us to optimize the antioxidant defenses in the body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call