Abstract

BackgroundThe Mental Health Biomarker Project (2010–2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance. Within a case–control discovery design with exclusion criteria designed to produce a highly characterised sample, results from 67 independently DSM IV-R-diagnosed cases of schizophrenia and schizoaffective disorder were compared with those from 67 control participants selected from a local hospital, clinic and community catchment area. Participants underwent protocol-based diagnostic-checking, functional-rating, biological sample-collection for thirty candidate markers and sensory-processing assessment.ResultsFifteen biomarkers were identified on ROC analysis. Using these biomarkers, odds ratios, adjusted for a case–control design, indicated that schizophrenia and schizoaffective disorder were highly associated with dichotic listening disorder, delayed visual processing, low visual span, delayed auditory speed of processing, low reverse digit span as a measure of auditory working memory and elevated levels of catecholamines. Other nutritional and biochemical biomarkers were identified as elevated hydroxyl pyrroline-2-one as a marker of oxidative stress, vitamin D, B6 and folate deficits with elevation of serum B12 and free serum copper to zinc ratio.When individual biomarkers were ranked by odds ratio and correlated with clinical severity, five functional domains of visual processing, auditory processing, oxidative stress, catecholamines and nutritional-biochemical variables were formed. When the strengths of their inter-domain relationships were predicted by Lowess (non-parametric) regression, predominant bidirectional relationships were found between visual processing and catecholamine domains. At a cellular level, the nutritional-biochemical domain exerted a pervasive influence on the auditory domain as well as on all other domains.ConclusionsThe findings of this biomarker research point towards a much-required advance in Psychiatry: quantification of some theoretically-understandable, translationally-informative, treatment-relevant underpinnings of serious mental illness. This evidence reveals schizophrenia and schizoaffective disorder in a somewhat different manner, as a conglomerate of several disorders many of which are not currently being assessed-for or treated in clinical settings. Currently available remediation techniques for these underlying conditions have potential to reduce treatment-resistance, relapse-prevention, cost burden and social stigma in these conditions. If replicated and validated in prospective trials, such findings will improve progress-monitoring and treatment-response for schizophrenia and schizoaffective disorder.

Highlights

  • The Mental Health Biomarker Project (2010–2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance

  • Patient characteristics In this retrospective case–control study, 67, DSM-IV-R diagnosed [11] participants, between 18 and 60 years of age were enrolled from the western catchment area of Adelaide, South Australia

  • Results related to catecholamines were for urine dopamine, noradrenaline, adrenaline, homovanillic acid (HVA), methoxy-hydroxymandelic acid (MHMA), 5-hydroxyindoleacetic acid (5-HIAA) [15], creatinine and hydroxyhemopyrroline-2-one (HPL) - a metabolite indicative of oxidative stress [16]

Read more

Summary

Introduction

The Mental Health Biomarker Project (2010–2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance. Within a case–control discovery design with exclusion criteria designed to produce a highly characterised sample, results from 67 independently DSM IV-R-diagnosed cases of schizophrenia and schizoaffective disorder were compared with those from 67 control participants selected from a local hospital, clinic and community catchment area. Other studies have tested the ability of multi-analyte technology to profile biomarkers. These techniques have the capacity to generate thousands of markers that may demonstrate overall predictive power but yield only marginal understanding of the disease process and no causal framework for practical application to assessment and treatment in the clinical context [5]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call