Abstract

BackgroundBevacizumab is a humanized monoclonal antibody to human vascular endothelial cell growth factor (VEGF) and has been used for many types of cancers such as colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma. Bevacizumab might be effective against gastric cancer, because VEGF has been reported to be involved in the development of gastric cancer as well as other cancers. On the other hand, there are no established biomarkers to predict the bevacizumab efficacy in spite of clinical needs. Therefore, we tried to identify the predictive markers for efficacy of bevacizumab in gastric cancer patients by using bevacizumab-sensitive and insensitive tumor models.MethodsNine human gastric and two colorectal cancer mouse xenografts were examined for their sensitivity to bevacizumab. We examined expression levels of angiogenic factors by ELISA, bioactivity of VEGF by phosphorylation of VEGFR2 in HUVEC after addition of tumor homogenate, tumor microvessel density by CD31-immunostaining, and polymorphisms of the VEGF gene by HybriProbe™ assay.ResultsOf the 9 human gastric cancer xenograft models used, GXF97, MKN-45, MKN-28, 4-1ST, SC-08-JCK, and SC-09-JCK were bevacizumab-sensitive, whereas SCH, SC-10-JCK, and NCI-N87 were insensitive. The sensitivity of the gastric cancer model to bevacizumab was not related to histological type or HER2 status. All tumors with high levels of VEGF were bevacizumab-sensitive except for one, SC-10-JCK, which had high levels of VEGF. The reason for the refractoriness was non-bioactivity on the phosphorylation of VEGFR2 and micro-vessel formation of VEGF, but was not explained by the VEGF allele or VEGF165b. We also examined the expression levels of other angiogenic factors in the 11 gastrointestinal tumor tissues. In the refractory models including SC-10-JCK, tumor levels of another angiogenic factor, bFGF, were relatively high. The VEGF/bFGF ratio correlated more closely with sensitivity to bevacizumab than with the VEGF level.ConclusionsVEGF levels and VEGF/bFGF ratios in tumors were related to bevacizumab sensitivity of the xenografts tested. Further clinical investigation into useful predictive markers for bevacizumab sensitivity is warranted.

Highlights

  • Bevacizumab is a humanized monoclonal antibody to human vascular endothelial cell growth factor (VEGF) and has been used for many types of cancers such as colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma

  • Sensitivity to bevacizumab in human gastric cancer xenograft models We examined the antitumor activity of bevacizumab in the MKN-45 human gastric xenograft model

  • Bevacizumab showed significant antitumor activity against MKN-45 tumors at doses ranging from 1.25 mg/kg to 20 mg/kg (Figure 1A)

Read more

Summary

Introduction

Bevacizumab is a humanized monoclonal antibody to human vascular endothelial cell growth factor (VEGF) and has been used for many types of cancers such as colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma. We tried to identify the predictive markers for efficacy of bevacizumab in gastric cancer patients by using bevacizumab-sensitive and insensitive tumor models. Bevacizumab is a humanized monoclonal antibody to human VEGF that inhibits VEGF-mediated angiogenesis in many types of tumors. In the US and EU, bevacizumab is used in combination with standard chemotherapies for patients with colorectal cancer, non-small cell lung cancer, breast cancer, and glioblastoma. It is important to investigate the biomarker of bevacizumab efficacy from the phase of clinical development for other cancer types

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call