Abstract

Abstract Samples from two argillaceous formations (Opalinus Clay and Posidonia Shale) of near-identical maturity from northern Switzerland were subjected to a geochemical characterisation of organic matter and to confined-system pyrolysis experiments. Throughout the study area, the characteristics of organic matter are similar, indicating a spatially homogeneous sedimentary facies. Posidonia Shale contains marine organic matter deposited in a reducing environment, while a predominantly terrigenous source and a more oxidising environment of deposition was identified for Opalinus Clay. In the western and central parts of the study area, organic maturity is close to the onset of oil generation. In the easternmost part, a higher maturity has been reached due to a deeper burial below thick Tertiary Molasse deposits. Isothermal pyrolysis experiments were conducted at temperatures between 250 and 390 °C over 24 h. Bitumen yields increase along similar pathways for both Opalinus Clay and Posidonia Shale, but the maximum values are displaced by 10–20 °C. Data pertaining to maturity were determined from GC–MS analyses of saturated hydrocarbons, and specific attention was given to C 29 -sterane and C 32 -hopane isomerisation ratios. The evolution of these parameters with rising temperature is slightly different in the two formations, which is attributed to the contrasting organic facies. The pyrolysis data, together with literature data from natural basins, were used to calculate kinetic parameters for C 29 -sterane and C 32 -hopane, assuming a single-step isomerisation scheme according to the Arrhenius law. The resulting values based on pyrolysis data alone are very similar to those based on the combination of pyrolysis and natural data. Activation energies are similar in both formations, while the frequency factors are up to one order of magnitude higher for Posidonia Shale when compared to Opalinus Clay. For the Benken site, maximum temperature during Cretaceous burial was calculated on the basis of the kinetic data, using the TTI approach. The resulting temperatures of 75–80 °C are 5–10 °C below those derived in the literature from apatite fission-track analysis, vitrinite reflectance and basin modelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call