Abstract
The vaginal microbiome has a substantial role in the occurrence of preterm birth (PTB), which contributes substantially to neonatal mortality worldwide. However, current bioinformatics approaches mostly concentrate on the taxonomic classification and functional profiling of the microbiome, limiting their abilities to elucidate the complex factors that contribute to PTB. A total of 3757 vaginal microbiome 16S rRNA samples were obtained from five publicly available datasets. The sampleswere divided into two categories based on pregnancy outcome: preterm birth (PTB) (N = 966) and term birth (N = 2791). Additionally, the samples were further categorized based on the participants' race and trimester. The 16S rRNA reads were subjected to taxonomic classification and functional profiling using the Parallel-META 3 software in Ubuntu environment. The obtained abundances were analyzed using an integrated systems biology and machine learning approach to determine the key microbes, pathways, and genes that contribute to PTB. The resulting features were further subjected tostatistical analysis to identify the top nine features with the greatest effect sizes. We identified nine significant features, namely Shuttleworthia, Megasphaera, Sneathia, proximal tubule bicarbonate reclamation pathway, systemic lupus erythematosus pathway, transcription machinery pathway, lepA gene, pepX gene, and rpoD gene. Their abundance variations were observed through the trimesters. Vaginal infections caused by Shuttleworthia, Megasphaera, and Sneathia and altered small metabolite biosynthesis pathways such as lipopolysaccharide folate and retinal may increase the susceptibility to PTB. The identified organisms, genes, pathways, and their networks may be specifically targeted for thetreatment of bacterial infections that increasePTB risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of reproductive immunology (New York, N.Y. : 1989)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.