Abstract
This work presents a new method for variable selection in complex spectral profiles. The method is validated by comparing samples from cerebrospinal fluid (CSF) with the same samples spiked with peptide and protein standards at different concentration levels. Partial least squares discriminant analysis (PLS-DA) attempts to separate two groups of samples by regressing on a y -vector consisting of zeros and ones in the PLS decomposition. In most cases, several PLS components are needed to optimize the discrimination between groups. This creates difficulties for the interpretation of the model. By using the y -vector as a target, it is possible to transform the PLS components to obtain a single predictive target-projected component analogously to the predictive component in orthogonal partial least squares discriminant analysis (OPLS-DA). By calculating the ratio between explained and residual variance of the spectral variables on the target-projected component, a selectivity ratio plot is obtained that can be used for variable selection. Used on whole mass spectral profiles of pure and spiked CSF, we can detect peptide in the low molecular mass range (740–9000 Da) at least down to 400 pM level without severe problems with false biomarker candidates. Similarly, we detect added proteins at least down to 2 nM level in the medium mass range (6000–17,500 Da). Target projection represents the optimal way to fit a latent variable decomposition to a known target, but the selectivity ratio plot can be used for OPLS as well as other methods that produce a single predictive component. Comparison with some commonly used tools for variable selection shows that the selectivity ratio plot has the best performance. This observation is attributed to the fact that target projection utilizes both the predictive ability (regression coefficients) and the explanatory ability (spectral variance/covariance matrix) for the calculation of the selectivity ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.