Abstract

Reclaimed water is an effective method for addressing water pollution and shortages. However, its use may contribute to the collapse of receiving water (algal blooms and eutrophication) owing to its unique characteristics. A three-year biomanipulation project was conducted in Beijing to investigate the structural changes, stability, and potential risks to aquatic ecosystems associated with the reuse of reclaimed water in rivers. During the biomanipulation, the proportion of Cyanophyta in the community structure of phytoplankton density in river supplied with reclaimed water decreased, and the community composition shifted from Cyanophyta and Chlorophyta to Chlorophyta and Bacillariophyta. The biomanipulation project increased the number of zoobenthos and fish species and significantly increased fish density. Despite the significant difference in aquatic organisms community structure, diversity index and community stability of aquatic organisms remained stable during the biomanipulation. Our study provides a strategy for minimizing the hazards of reclaimed water through biomanipulation by reconstructing the community structure of reclaimed water, thereby making it safe for large-scale reuse in rivers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call