Abstract

<p>Methylmercury is greatly bioconcentrated and biomagnified in marine plankton ecosystems, and these communities form the basis of marine food webs. Therefore, evaluating the potential exposure of methylmercury to higher trophic levels, including humans, requires a better understanding of its distribution in the ocean and the factors that control its biomagnification. In this study, a coupled physical/ecological model was used to simulate the trophic transfer of monomethylmercury (MMHg) in a marine plankton ecosystem. The model includes phytoplankton, a microbial community, herbivorous zooplankton (HZ), and carnivorous zooplankton (CZ). The model captured both shorter food chains in oligotrophic regions, with small HZ feeding on small phytoplankton, and longer chains in higher nutrient conditions, with larger HZ feeding on larger phytoplankton and larger CZ feeding on larger HZ. In the model, trophic dilution occurred in the food webs that involved small zooplankton, as the grazing fluxes of small zooplankton were insufficient to accumulate more MMHg in themselves than in their prey. The model suggested that biomagnification was more prominent in large zooplankton and that the microbial community played an important role in the trophic transfer of MMHg. Sensitivity analyses showed that with increasing body size, the sensitivity of the trophic magnification ratio to grazing, mortality rates, and food assimilation efficiency (AE<sub>C</sub>) increased, while the sensitivity to excretion rates decreased. More predation or a longer zooplankton lifespan may lead to more prominent biomagnification, especially for large species. Because lower AE<sub>C</sub> resulted in more predation, modeled ratios of MMHg concentrations between large CZ and HZ doubled when the AE<sub>C</sub> decreased from 40% to 10%. This suggested that the biomagnification of large zooplankton was particularly sensitive to food assimilation efficiency.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.