Abstract

Synchrotron radiation-based Fourier Transform Infrared (SR-FTIR) microspectroscopy is a non-destructive and chemically sensitive technique for the rapid detection of changes in the different components of the cell's biomacromolecular profile. Reactive oxygen species and oxidative stress may cause damage to the DNA, RNA, and proteins in the retinal pigment epithelium (RPE), which can further lead to age-related macular degeneration (AMD) and visual loss in the elderly. In this study, human primary RPEs (hRPEs) were used to study AMD pathogenesis by using an established in vitro cellular model of the disease. Autophagy-a mechanism of intracellular degradation, which is altered during AMD, was studied in the hRPEs by using the autophagy inducer rapamycin and treated with the autophagy inhibitor bafilomycin A1. In addition, oxidative stress was induced by the hydrogen peroxide (H2O2) treatment of hRPEs. By using SR-FTIR microspectroscopy and multivariate analyses, the changes in the phosphate groups of nucleic acids, Amide I and II of the proteins, the carbonyl groups, and the lipid status in the hRPEs showed a significantly different pattern under oxidative stress/autophagy induction and inhibition. This biomolecular fingerprint can be evaluated in future drug discovery studies affecting autophagy and oxidative stress in AMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.