Abstract

Although bioluminescent molecular beacons designed around resonance quenchers have shown higher signal-to-noise ratios and increased sensitivity compared with fluorescent beacon systems, bioluminescence quenching is still comparatively inefficient. A more elegant solution to inefficient quenching can be realized by designing a competitive inhibitor that is structurally very similar to the native substrate, resulting in essentially complete substrate exclusion. In this work, we designed a conjugated anti-interferon-γ (IFN-γ) molecular aptamer beacon (MAB) attached to a bioluminescent protein, Gaussia luciferase (GLuc), and an inhibitor molecule with a similar structure to the native substrate coelenterazine. To prove that a MAB can be more sensitive and have a better signal-to-noise ratio, a bioluminescence-based assay was developed against IFN-γ and provided an optimized, physiologically relevant detection limit of 1.0 nM. We believe that this inhibitor approach may provide a simple alternative strategy to standard resonance quenching in the development of high-performance molecular beacon-based biosensing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.