Abstract
A culture system for lactating rat mammary acini was evaluated, where the primary indicator of performance was lactose secretion, measured by a sensitive bioluminescence assay. Lactose secretion was reduced by half (p<0.01) over the first 6 h of culture by overnight feed withdrawal (FW) from tissue donors but was sensitive to increased glucose concentration in the culture media (p<0.001) up to 30 mM. Lactose production of cells from fed donors over the first 6 h in culture in 30 mM glucose was 8.9 fmol/cell/h -a rate calculated to be about half that in vivo. No significant difference was shown in lactose secretion by cells from fed or FW rats over 6-24 h. Lactose secretion was 3.6 fmol/cell/h by cells from fed animals in 40 mM glucose concentration media over the 6-24 h culture period. Addition of insulin to the culture media had no effect on rates of lactose secretion while addition of prolactin and hydrocortisone, with or without insulin, significantly (p<0.001) decreased lactose production over both 0-6 h and 6-24 h culture periods. Lactose synthesis in vitro was significantly enhanced by aeration of the media during collagenase digestion of mammary tissue (p<0.05). No improvement in lactose secretion was effected by shaking of cells during culture, Matrigel coating of culture dishes or change in cell density over a range up to 2.5 million cells per ml.
Highlights
Effects of glucose concentration in vitro and nutritional status of tissue donor Acini showed a linear increase in lactose secretion with increasing glucose concentration
The same trends were apparent in lactose secretion over
It can be calculated that the rate of lactose synthesis is 16-20 fmol/cell/h based
Summary
Lactose secretion was reduced by half (p
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.