Abstract

192 Background: Preclinical pancreatic cancer animal models for radiation research are far from optimal because they utilize nonlocalized, single-beam irradiation of large fields due to lack of accurate targeting and delivery. We report on a novel preclinical pancreatic cancer research model that utilizes bioluminescence imaging (BLI)-guided irradiation (RT) of orthotopic xenograft tumors, sparing of surrounding normal tissues and quantitative, noninvasive longitudinal assessment of treatment response. Methods: In accordance with institutional guidelines, luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were used to generate orthotopic pancreatic tumors in nude mice. BLI of tumors were correlated to PET/CT and necropsy specimens using Pearson correlation. BLI was compared to cone-beam CT (CBCT) to determine the location of the tumor centroid and estimate an appropriate margin for radiation planning. Off-line fusion of BLI with CBCT was performed to guide radiation delivery to tumors using our small animal radiation research platform (SARRP). RT-induced DNA damage was assessed by γ-H2Ax and p-ATM foci. BLI was used to longitudinally monitor radiation treatment response and was correlated to necropsy specimen. Results: BLI accurately predicted tumor volume (R2 = 0.9961) and correlated well with PET/CT imaging of tumors (R2 = 0.97). BLI centroid accuracy was 3.5 mm relative to that of the CBCT. Irradiated pancreatic tumors stained positively for γ-H2Ax and p-ATM, while surrounding organs were spared. Longitudinal assessment of irradiated (5 Gy) tumors with BLI revealed a significant tumor growth delay of 20 days relative to untreated controls. This was also confirmed pathologically as mean tumor volume of irradiated mice was 30.2% that of unirradiated mice (p < 0.05). Conclusions: We have developed a bioluminescent, orthotopic preclinical pancreas cancer model that allows noninvasive 1) normalizing of pretreatment tumor burden; 2) treatment planning and image-guided focal RT therapy; and 3) longitudinal assessment of treatment response. This unique translational model offers a means to investigate targeted and systemic agents with focused RT for pancreatic cancer. No significant financial relationships to disclose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call