Abstract

A primary motivation for research in digital ecosystems is the desire to exploit the self-organising properties of natural ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in digital ecosystem research. Here, we discuss how biological properties contribute to the self-organising features of natural ecosystems. These properties include populations of evolving agents, a complex dynamic environment, and spatial distributions which generate local interactions. The potential for exploiting these properties in artificial systems is then considered. An example architecture, the digital business ecosystem (DBE), is considered in detail. Simulation results imply that the DBE performs better at large scales than a comparable service-oriented architecture. These results suggest that incorporating ideas from theoretical ecology can contribute to useful self-organising properties in digital ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.