Abstract

Developing highly efficient and sustainable hydrogen evolution reaction (HER) electrocatalysts is important for the practical application of emerging energy technologies. The spherical structure and phosphorus-rich properties of Chlorella can facilitate the construction of comparable transition metal phosphide electrocatalysts. Here, a microorganism template strategy is proposed to construct a cobalt-phosphide-graphene hybrid. Chlorella can absorb metal ions, and the generated rough spherical nanoparticles are uniformly distributed around the reduced graphene oxide nanosheets. This designed catalyst has comparable HER performance in acidic electrolytes and needs an overpotential of only 153 mV at a current density of 10 mA cm−2. The experimental and density functional theory results imply that the charge redistribution between Co2P and pyrrole-N is the key factor in enhancing the HER activity. The induced electron aggregation at the N and P sites can serve as a key active site for absorbing the adsorbed hydrogen atom intermediate to accelerate the HER process, contributing to the active sites of Co2P- and pyrrole-N-doped carbon with 0 eV hydrogen adsorption free energy. This work provides a broad idea for synthesizing advanced catalysts by a biological template approach, facilitating the innovative integration of biology and emerging electrochemical energy technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.