Abstract
Automatic gender classification has many applications in human computer interaction. However, to determine the gender of an unseen face is challenging because of the diversity and variations in the human face. In this paper, we explore the importance of biologically significant facial landmarks for gender classification and propose a fully automatic gender classification algorithm. We extract 3D Euclidean and Geodesic distances between these landmarks and use feature selection to determine the relative importance of the biological landmarks for classifying gender. Unlike existing techniques, our algorithm is fully automatic since all landmarks are automatically detected. Experiments on one of the largest 3D face databases FRGC v2 show that our algorithm outperforms all existing techniques by a significant margin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.