Abstract

Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. Statement of significanceThe CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells’ ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call