Abstract
This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.