Abstract

Applying concepts and methods of bionics to endow autonomous robots with elegant and agile mobility just like natural living beings is gradually becoming a hot research topic in intelligent robot field. Compared with walking, crawling, rolling and other motion modes, jumping performs considerable advantages that can leap across obstacles and move to different heights in agility and flexibility. In this paper, we specifically review the developments of biologically inspired jumping robots in the past decades, and give comprehensive analysis on some key technologies for implementing a practical jumping robot effectively. First, the jumping mechanism of frog (amphibian, quadruped), locust (arthropod, hexapod), kangaroo (mammality, bipedalism) as examples of typical animals good at jumping is introduced and analyzed, from which it is concluded that power sources, limbs coordination and control are key elements for excellent jumping performances, which should be synthetically improved by combination with structure design and model establishment. Then, spring loaded inverted pendulum (SLIP), bio-inspired open-chain and closed-chain multi-linkage as representative jumping mechanical structures, their characteristics are explored accompanied with dynamic analysis. After a detailed analysis to actuators and energy storage devices and a comprehensive summarization to functional and soft materials commonly applied in jumping robots, different control methods and strategies adopted to achieve better jumping performance are reviewed and analyzed, from self-righting, driving control to path planning. Especially, how to analyze the stability of a jumping control system and how to stabilize it are explained theoretically by taking a vertical monopedal jumping robot as an example and via limit cycle analysis. Finally, some feasible and potential future developments in bio-inspired jumping robots are also presented after detailed discussions on current status and existing deficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.