Abstract

Phosphorus (P) removal occurred in heterotrophic nitrification process, but its mechanism has not been fully explored. In this study, the P removal performances, pathways, and mechanisms in heterotrophic nitrification processes of different microbial aggregates (activated sludge and biofilm) were investigated. The results showed that the biofilm reactor had more efficient total nitrogen removal (98.65%) and phosphate removal (94.17%). Heterotrophic nitrification and denitrification processes generated alkalinity for biologically induced phosphate precipitation (BIPP), which contributed to 64.12%-78.81% of the overall P removal. The solid phase P content reached 48.03 mg/gSS with hydroxyapatite and calcium phosphate formation. The study clarified that biofilm was beneficial to BIPP because of the nitrogen removal metabolism and extracellular polymeric substance (EPS). Heterotrophic nitrogen removal metabolism was the driving force of BIPP, while EPS with abundant carboxyl and amide groups promoted the precipitation. The study would provide new insights into simultaneous nutrients removal and P recovery from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call