Abstract

AbstractElectron‐transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1) % electron recovery into acetate. Nevertheless, acetate production is shown to occur exclusively within the biofilm. The acetate producers, putatively Acetoanaerobium, showed the remarkable ability to consume a high H2 flux before it could escape from the biofilm. At zero wastage of H2 gas, it allows superior production rates and lesser technical bottlenecks over technologies that rely on mass transfer of H2 to microorganisms suspended in aqueous solution. This study suggests that bacterial modification of the electrode surface (possibly via synthesis of Cu nanoparticles) is directly involved in the significant enhancement of the hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.