Abstract

We report the preparation of ultrathin coatings of zwitterionic block copolymer micelles and a comparison of their protein adsorption, adhesiveness, and antibacterial properties. Zwitterionic block copolymer micelles were obtained through pH-induced self-assembly of poly[3-dimethyl(methacryloyloxyethyl)ammonium propanesulfonate- b-2-(diisopropylamino)ethyl methacrylate] (βPDMA- b-PDPA) at pH 7.5. βPDMA- b-PDPA micelles with zwitterionic βPDMA-corona and pH-responsive PDPA-core were then used as building blocks to prepare layer-by-layer (LbL) assembled multilayer films together with hyaluronic acid (HA), tannic acid (TA), or poly(sodium 4-styrenesulfonate) (PSS). Protein adsorption tests showed that 3-layer βPDMA- b-PDPA micelles/HA films were the most effective to reduce the adhesion of BSA, lysozyme, ferritin, and casein. In contrast, βPDMA- b-PDPA micelles/TA films were the most attractive surfaces for protein adsorption. Bacterial antiadhesive tests against a model Gram-negative bacterium, Escherichia coli, and a model Gram-positive bacterium, Staphylococcus aureus, were in good agreement with the protein adsorption properties of the films. The differences in the antiadhesive properties between these three different film systems are discussed within the context of chemical nature and the functional chemical groups of the polyanions, layer number, and surface morphology of the films. Multilayers were found to lose their antiadhesiveness in the long term. However, by taking advantage of the pH-responsive hydrophobic micellar cores, we show that an antibacterial agent could be loaded into the micelles and multilayers could exhibit antibacterial activity in the long term especially at moderately acidic conditions. In contrast to antiadhesive properties, no significant differences were recorded in the antibacterial properties between the different film types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.