Abstract

The phytochemical screening of potentially efficient medicinal herbs is one of the current focus areas of modern pharmacochemistry. This work aims to analyze the phytochemical composition of the aboveground parts in three Stellaria species (S. bungeana, S. graminea, S. holostea). The study was conducted between May and July 2020 in the Moscow region of the Russian Federation. Yield values for raw herbal materials and density of stitchwort samples per 1 m2 (154 sites in total) were recorded, followed by a phytochemical analysis of the dry mass by chromatography. The maximum yield of S. bungeana was established to be 1.5 times higher than in two other species (p ≤ 0.05). In S. graminea, the maximum pectin concentration was 12 times higher than in S. holostea (p ≤ 0.001) and 0.5 times higher than in S. bungeana (p ≤ 0.05). The number of polysaccharides in S. bungeana was 14 times higher than in S. graminea (p ≤ 0.001) and two higher than in S. holostea (p ≤ 0.05). Hemicellulose content of S. bungeana extract was twice as high as that of other species (p ≤ 0.05). Tannins in S. graminea were found two times more often than in S. holostea (p ≤ 0.05) and eight times more often in S. bungeana (p ≤ 0.01). Vitamin C content in S. graminea was two times greater than in the other two stitchwort species (p ≤ 0.05). Stitchwort is a common, widespread plant that makes it easy to collect without harming plant communities. Biologically active substances (polysaccharides, vitamin C, tannins, and pectins) were found in the composition of all stitchwort species with a preventive and therapeutic effect on the human body. The concentration of tannins and vitamin C is maximal in S. graminea extract, amounting to 2.6% and 45.9%, accordingly. The extract from S. bungeana contains a lot of hemicellulose (13.2%) and polysaccharides (7.2%). No high concentration of these substances was recorded in S. holostea, which makes this species the least pharmaceutically valuable. S. graminea and S. bungeana plants can be recommended for pharmaceutical processing due to the high concentrations of vitamin C, pectins, tannins, polysaccharides, and hemicellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call