Abstract

In relation to the situation caused by the pandemic, which may also take place in the future, there is a need to find effective solutions to improve the economic situation of the floristry industry. The production and sale of flowers is time-consuming and long-term. Therefore, any information that causes the impossibility of selling the plants will result in a reduction of profitability or bankruptcy of such companies. Research on rationally utilizing biowaste from plant cultivation as well as unsold flowers for environmental protection and effective use of their potential as a raw material for bioenergy production were examined in this article. The aim of this study was to analyze the energetic potential of the biodegradable fraction of waste from floriculture. The trials included floricultural waste containing the stems, leaves and flowers of different species and hybrid tulips (Tulipa L.), roses (Rosa L.), sunflowers (Helianthus L.) and chrysanthemums (Dendranthema Des Moul.). Their biogas and methane production as well as heat of combustion were determined experimentally. The calorific value was calculated on the basis of results from selected floricultural waste and its chemical composition. The biogas production was tested on different levels of plant material fragmentation (chaff, macerate) in fermentation processes with two ranges of temperature (meso- and thermophilic fermentation). The presented results show that the highest calorific values were determined for dry stems of roses (18,520 kJ/kg) and sunflowers (18,030 kJ/kg). In turn, the lowest were obtained for dried chrysanthemums and tulips, for which the heating value reached 15,560 kJ/kg and 15,210 kJ/kg. In addition, based on one ton of the fresh mass of biowaste from floriculture, the largest biogas production including the control was obtained from the chrysanthemum chaff by mesophilic anaerobic digestion. Moreover, the largest volume of methane was received by thermophilic anaerobic digestion of roses. The highest content of biomethane (56.68%) was reached by thermophilic fermentation of roses. The energy production of the analyzed substrates was also calculated, based on the amount of biogas produced in the containers for anaerobic digestion. Additionally, a deep neural network model, which predicted the production of methane gas, was created. Owing to the properties of the network, the level of significance of variables used for modelling and prediction of biogas production was determined. The neural modelling process was carried out with the use of the H2O program.

Highlights

  • During natural disasters like a pandemic and any other crises, many industries report losses.One of these sectors of the economy is gardening and horticulture

  • The biogas production was tested on different levels of plant material fragmentation in fermentation processes with two ranges of temperature

  • The test was repeated for each feedstock until the difference between the results of the two most closely related tests was no more than 120 kJ/kg

Read more

Summary

Introduction

During natural disasters like a pandemic and any other crises, many industries report losses. One of these sectors of the economy is gardening and horticulture. Agricultural and horticultural production cannot be stopped overnight. In the Netherlands, 400 million tons of unsold flowers were destroyed, including 140 million tons of tulips, during only one month (March 2020) [1]. This problem affects other countries and it results in wasting huge amounts of biomass from the floriculture industry

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call