Abstract

Actual acid mine drainage (AMD) containing a high concentration of sulfate (∼1,000 mg·L-1), dissolved metals, uranium, rare earth elements and yttrium (REY) was treated using a down-flow fixed-structured bed biological reactor (DFSBR). The reactor was operated in a continuous flow mode for 175 days and the temperature was maintained at 30 °C. The synthetic AMD was gradually replaced by the actual AMD in 20, 50 and 75% of the total medium volume. Sugarcane vinasse was used as the electron donor and the influent pH of the reactor was decreased from 6.9 to 4.6 until the system collapsed. REY elements and transition metals were removed from the actual AMD and precipitated in the down-flow fixed-structured bed reactor. Sulfate reduction achieved 67 ± 22% in Phase II and chemical oxygen demand (COD) removal was above 56% in Phases I and II. Removal of La, Ce, Pr, Nd, Sm and Y was higher than 70% in both Phases II and III while Fe, Al, Si and Mn were removed with efficiencies of 79, 67, 48 and 25%, respectively. The results highlighted the potential use of DFSBR in the treatment of AMD, providing possibilities for simultaneous sulfate reduction and metal and REY recovery in a single unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.