Abstract

Micropollutants or contaminants of emerging concern (CECs) are released into the environment from a wide variety of sources. Due to the adverse effect on human health, micropollutant-containing wastewater needs to be treated before its discharge. A number of conventional physicochemical methods have been extensively studied for micropollutant degradation. However, owing to their one or more disadvantages, biological treatment using suitable microorganisms is of recent interest. Numerous bacteria and fungi are capable of degrading these micropollutants even at high concentrations. However, in order for the biological treatment to be commercially viable and industrially scalable, bioprocess development with efficient bioreactor systems is highly essential. This paper reviews state-of-the-art techniques for the removal of micropollutants by conventional biological systems such as activated sludge process, biofilm-based reactor, and trickling bed bioreactor. However, compared with conventional systems, advanced biological systems, namely two-phase partitioning bioreactor, membrane-based reactor, and cell-immobilized bioreactor systems, have not been examined and, hence, need detailed exploration. Such advanced treatment systems are capable of tolerating high pollutant load and are also able to treat highly water insoluble pollutants. Furthermore, hybrid systems comprising of a combination of different physicochemical and biological processes are discussed in this paper, which are not only capable of improving the treatment efficiency but also eliminate any accumulation of the toxic by-product produced during the treatment. Among the different hybrid systems, a combination of different biological systems is found to be highly efficient in treating micropollutant-containing wastewater. Finally, scope for future research prospects in the field are derived and addressed in details.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.