Abstract

AbstractIn previous reports from this laboratory it has been shown that the extended aeration process for biological treatment of organically laden municipal and/or industrial waste could be successfully employed for concurrent purification and sludge disposal. Also results using a modified process in which autodigestion was aided and controlled by periodic partial hydrolysis of small portions of the recycle sludge showed that operational control was feasible. There was some question regarding the success of such a process if the original waste contained a large portion of inorganic solids. Accordingly, a 1½ year pilot plant study was made using a waste (hydrolyzed trickling filter sludge) of exceptionally high ash content (50–60%). It was found that the ash content of activated sludge grown on this substrate did not continually increase nor did the high ash content of the waste interfere in any way with the efficiency of removal of organic matter. In general it exceeded 90 percent. Also a highly nitrified effluent was produced. A variety of analyses were performed: COD, BOD, TOC, suspended solids, NH3‐N, organic‐N, NO3‐N, etc. Interrelationships between these important monitoring parameters for assessing plant performance offered useful insight into operational control for hydrolytically assisted extended aeration processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.