Abstract
This study investigated the removal of selenate (SeO42−), sulfate (SO42−) and nitrate (NO3−) at different influent pH values ranging from 7.0 to 5.0 and 20 °C in an upflow anaerobic sludge blanket (UASB) reactor using lactate as an electron donor. At pH 5.0, the UASB reactor showed a 20–30% decrease in reactor performance compared to operation at pH 5.5 to 7.0, reaching removal efficiencies of 79%, 15%, 43% and 61% for NO3−, SO42−, Setotal and Sediss, respectively. However, the reactor stability was an issue upon lowering the pH to 5.0 and further experiments are recommended. The sludge formed during low pH operation had a fluffy, floc-like appearance with filamentous structure, possibly due to the low polysaccharide (PS) to protein (PN) ratio (0.01 PS/PN) in the soluble extracellular polymeric substances (EPS) matrix of the biomass. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis of the sludge confirmed Se oxyanion reduction and deposition of Se0 particles inside the biomass. Microbial community analysis using Illumina MiSeq sequencing revealed that the families of Campylobacteraceae and Desulfomicrobiaceae were the dominant phylotypes throughout the reactor operation at approximately 23% and 10% relative abundance, respectively. Furthermore, approximately 10% relative abundance of both Geobacteraceae and Spirochaetaceae was observed in the granular sludge during the pH 5.0 operation. Overall, this study demonstrated the feasibility of UASB operation at pH values ranging from 7.0 to 5.0 for removing Se and other oxyanions from wastewaters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.