Abstract
Abstract The response of a continuous two-phase partitioning bioreactor (C-TPPB) operated with polymeric tubing treating hypersaline wastewater was investigated under dynamic load conditions of step, ramp and impulse inputs of the influent flow rate. Tests were performed with synthetic wastewater consisting of NaCl (100 g L−1) and 2,4-dimethylphenol (DMP) (∼1200 mg L−1) to simulate the organic fraction. A biomass specifically acclimatized to the compound was utilized in the tests. The experimental system provides separation of the toxic wastewater flowing inside the polymeric tubing (coiled in the bioreactor) from the microbial culture present in the bulk bioreactor phase with the polymer providing permeability to the organic molecules as well as a barrier to salt transport. These features allowed achieving high performance even in the most severe loading conditions. Removal efficiencies >96% were obtained for DMP under all investigated load conditions (i.e. for influent salt and organic loads up to six times the base case load). A DMP mass balance at the end of the dynamic tests showed that 88% of the removed DMP was biodegraded and only 8% was retained into the polymer tubing itself. No significant variation of the DMP concentration in the bioreactor was observed in all cases thus demonstrating the complete removal of the transferred substrate and the effective performance of the biomass, which was not affected by the applied dynamic loads. A comparative analysis of C-TPPB results with the performance data of the classical technologies commonly applied for saline wastewater treatment has been performed to evaluate the system applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.