Abstract
Biological Tomato leaf classification is very important to decide the pesticide, insecticide, and other treatments needed for the plant to yield good crop. The images captured by handheld cameras or using drones are used by various machine learning algorithms to identify the diseases. Such methods need extraction of features from the images before the machine learning methods can be used for disease identification. In this paper, a deep learning framework is proposed that automatically extracts features in a hierarchical manner. The features are classified using neural networks to classify the leaves into three classes, viz. no disease, bacterial spot, and Septoria leaf spot. The performance of the model is tested using accuracy as the performance metric. The obtained performance metric validates the performance of the method. The method is useful for taking corrective measures to disease management of tomato plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biology and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.