Abstract

The morphine alkaloid hydromorphone (dihydromorphinone) was identified as an intermediary metabolite in the degradation of morphine by Pseudomonas putida M10. A constitutive NADH-dependent morphinone reductase capable of catalyzing the reduction of the 7,8-unsaturated bond of morphinone and codeinone, yielding hydromorphone and hydrocodone, respectively, was shown to be present in cell extracts. The structures have been identified by 1H nuclear magnetic resonance and mass spectrometry. Morphinone reductase has been partially purified by anion-exchange and gel filtration chromatography. This enzyme has potential applications as a biocatalyst for the synthesis of the highly potent analgesic hydromorphone and the antitussive hydrocodone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.