Abstract

Manganese dioxide (MnO₂) nanoparticles were synthesised by the reduction of potassium permanganate (KMnO₄) using Kalopanax pictus leaf extract at room temperature. A transparent dark-brown colour appeared after the addition of K. pictus leaf extract to the solution of permanganate. The time course of the reduction of KMnO₄and synthesis of MnO₂ nanoparticles was monitored by means of UV-Vis spectra. The reduction of KMnO₄occurred after addition of plant extract with disappearance of KMnO₄specific peaks and emergence of peak specific for MnO₂nanoparticles. MnO₂nanoparticles showed absorption maxima at 404 nm. The electron dispersive X-ray spectroscopy analyses confirmed the presence of Mn and O in the sample. X-ray photoelectron spectroscopy revealed characteristic binding energies for MnO₂nanoparticles. Transmission electron microscopy micrographs revealed presence of uniformly dispersed spherical shaped particles with average size of 19.2 nm. The selected area electron diffraction patterns revealed the crystalline nature of MnO₂nanoparticles. Fourier transform-infrared spectroscopy spectra of pure MnO₂show the occurrence of O-Mn-O vibrational mode at around 518 cm⁻¹. The phyto-synthesised MnO₂nanoparticles showed degradation ability of dyes (congo red and safranin O) similar to chemically synthesised MnO₂nanoparticles. This study shows simple and eco-friendly synthesis of MnO₂nanoparticles by plant extract and their utilisation for dye degradation for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.