Abstract

Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to maintain good drinking water microbial quality up to consumer’s tap. A new definition and methodological approach for biological stability is proposed.

Highlights

  • The World Health Organization [WHO] (2006) stated that “Water entering the distribution system must be microbiologically safe and ideally should be biologically stable.” There is general consensus that the term ‘biological stability’ in this context refers to the concept of maintaining microbial water quality from the point of drinking water production up to the point of consumption (Rittmann and Snoeyink, 1984; van der Kooij, 2000)

  • While the assimilable organic carbon (AOC) assays by definition focus on available substrates for planktonic growth, biodegradable dissolved organic carbon (BDOC) assays enable the assessment of the refractory fraction of biodegradable organic carbon, which can be used by biofilm-bacteria in distribution systems (Camper, 2004; Flemming and Wingender, 2010)

  • With the emergence of methods such as flow cytometry and highthroughput sequencing methods, sensitive detection of changes in bacterial community characteristics led to a broader definition of biological stability (Lautenschlager et al, 2013): “Biological stability would imply no changes occurring in the concentrations and composition of the microbial community in the water during distribution”

Read more

Summary

Introduction

The World Health Organization [WHO] (2006) stated that “Water entering the distribution system must be microbiologically safe and ideally should be biologically stable.” There is general consensus that the term ‘biological stability’ in this context refers to the concept of maintaining microbial water quality from the point of drinking water production up to the point of consumption (Rittmann and Snoeyink, 1984; van der Kooij, 2000). Adverse health effects of disinfection by-products and altered water taste have, led several countries to opt for water distribution without the addition of disinfectant to the produced drinking water (Vital et al, 2012a; Lautenschlager et al, 2013; Prest et al, 2014) In the latter case, minimum change in water quality is achieved in the first place by controlling the water quality with extensive water treatment strategy, and secondly by distributing water in well-maintained piping systems (van der Kooij, 2003)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call