Abstract
A novel tetradentate N2O2 type of Knoevenagel condensate Schiff base, synthesized from 4‐amino‐2,3‐dimethyl‐1‐phenyl‐3‐pyrazolin‐5‐one (4‐aminoantipyrine) and 3‐(cinnamyl)‐pentane‐2,4‐dione, forms stable complexes with transition metal ions such as Cu(II), Co(II), Ni(II) and Zn(II). The structural features were derived from elemental analysis, molar conductance measurements, infrared, UV–visible, 1H NMR, 13C NMR, mass and electron paramagnetic resonance spectroscopies. These complexes show high conductance values, supporting their electrolytic nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry. In vitro calf thymus DNA binding studies were performed by employing UV–visible absorption spectroscopy, viscometry and cyclic voltammetry. These techniques indicate that all the metal complexes bind to DNA via intercalation mode. Antimicrobial screening of the synthesized ligand and complexes was conducted against Gram‐positive bacteria, Gram‐negative bacteria and fungi. These complexes exhibit higher antimicrobial activities than the free Schiff base, as investigated using the minimum inhibitory concentration method. Gel electrophoresis reveals that these complexes also promote the cleavage of pUC18 plasmid DNA in the presence of activators. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.