Abstract

Silicatein is an enzyme capable of catalyzing silica formation under mild conditions and is a promising catalyst for the fabrication of biohybrid materials. However, unfavorable aggregation of silicatein makes it unsuitable for use in material fabrication. In this study, a soluble protein tag (ProS2) and a carbohydrate-binding module (CBM) were used to develop a soluble and cellulose-binding fusion silicatein, ProS2-Sil-CBM, which can be efficiently immobilized on cellulose to form silica on it. ProS2-Sil-CBM was soluble in aqueous media and strongly bound to cellulose. ProS2-Sil-CBM bound on cellulose catalyzed the formation of a silica layer on the cellulose in the presence of tetraethyl orthosilicate as the substrate. Scanning electron microscopy (SEM) and surface elemental analysis confirmed the formation of silica on cellulose. This technique can be used to fabricate inorganic-organic hybrid materials to immobilize biomolecules and can be applied to develop novel biocatalytic systems, biosensors, and tissue culture scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.