Abstract
In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of energy by dissipative structures. The living cell metabolism represents a continuous transformation of a huge number of biologically significant chemical substances. The complex of these transformations results in maintenance of cell homeostasis. The cell functioning can be viewed as energy flows and matter conversions occurring on biological matrices. The flows of irreversible metabolic reactions proceed under steady-state condition of the system and ensure its balanced disequilibrium. The hypotheses considered in this review are based on the principles of energy dynamics; they permit the description of cell metabolism from the laws of nonequilibrium thermodynamics of open systems. It is concluded that the biogenic release of isoprene ensures entropy dissipation, which is required for regulation of fluxes leading to the formation of terpenoids and allowing the maintenance of cell homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.