Abstract

Climate change elements including elevated atmospheric carbon dioxide (CO2) concentration and soil salinity significantly impact weed biology and management. In this study, we evaluated the performance of a highly invasive plant species, parthenium weed (Parthenium hysterophorus L.) grown at various soil salinity levels (ranging from 0 to 16 dS m−1) at two CO2 concentrations (ambient: 400 ppm and elevated: 700 ppm). The CO2 concentration and soil salinity individually affected various early growth attributes of parthenium weed. The interaction between CO2 and salinity was significant for chlorophyll index, stem dry weight and phenolics content. Parthenium weed plants grew taller (13%), achieved greater leaf area (28%) and produced more dry weight (24%) when raised under elevated as compared with the ambient CO2. Soil salinity had a dose-dependent, negative effect on various growth attributes, chlorophyll index, relative water content and phenolics content. Even the modest levels of salinity (4.2 to 4.6 dS m−1) caused 50% reduction in dry weights of leaves, roots and whole plants. Sodium ion (Na+) concentration peaked at the highest salinity level (16 dS m−1) as compared with the lower salinity levels (0 to 12 dS m−1). Overall, salinity had a negative effect on different growth variables but elevated CO2 improved growth and phenolics content regardless of the salt stress regime. Hence, parthenium weed could benefit from future atmospheric CO2 concentration and may invade some salt-affected areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.