Abstract
In vitro and in vivo studies have recently shown that silicon nitride (Si3N4) is an osseoconductive and potential osseoinductive biomaterial. Even though the amount of bone mineral produced by Si3N4 was inferior when compared to commercial Bioglass®, it strongly stimulated the production of extracellular matrix and collagen tissues. Consequently, this study was designed to determine if appropriate mixtures of Bioglass® and Si3N4 might improve the ratio of mineral apatite to its biological matrix. Commercial 45S5 Bioglass® powder was mixed with 5 and 10 mol% Si3N4 powder, followed by melting, cooling, crushing, and comminution. The composite powders had modified morphologies and chemical structures including a reduced average particle size, a reduction of oxygen in the SiO backbone structure, and trapped CO2 gas which was converted into calcium carbonate. When exposed to human osteosarcoma cells within an osteogenic medium, the 5 mol% Si3N4 composite powder resulted in higher amounts of hydroxyapatite while the 10 mol% Si3N4 powder provided in a more balanced combination of collagen and mineral fractions closer to the natural composition of native human bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.